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Abstract—In this paper, we propose a projection method for
solving nonlinear complementarity problems and a zero point of
maximal monotone operators. Strong convergence theorems are
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I. INTRODUCTION AND PRELIMINARIES

THE complementarity problem is one of the important
problems and deep connections with nonlinear analysis

and by its interesting applications in areas example such
as: Optimization Theory, Engineering, Structural Mechanics,
Elasticity Theory, Economics, Equilibrium Theory, Nonlin-
ear Dynamics, Stochastic Optimal Control. Some natural
connections between the complementarity problem and some
special fixed point theorems are used to prove several exis-
tance theorems.

Recently, In 2015, Phuangphoo and Kumam [10] intro-
duced a new iterative sequence which is constructed by
using the hybrid projection method for solving the common
solution for a system of generalized equilibrium problems of
inverse strongly monotone mappings and a system of bifunc-
tions satisfying certain the conditions, the common solution
for the families of quasi -φ- asymptotically nonexpansive and
uniformly Lipschitz continuous and the common solution
for a variational inequality problem. Strong convergence
theorems are proved on approximating a common solution
of a system of generalized equilibrium problems, fixed
point problems for two countable families and a variational
inequality problem in a uniformly smooth and 2-uniformly
convex real Banach space.

Let E be a Banach space with norm ‖·‖, C be a nonempty
closed and convex subset of E and let E∗ denote by the dual
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of E. One of the major problems in the theory of monotone
operators is as follows: find a point z ∈ E such that

0 ∈ Az, (I.1)

where A is an operator from E into E∗. A point z ∈ E
is called a zero point of operator A. The set of zeroes of
the operator A is denoted by A−10. This problem contains
numerous problems in optimization, economics, physics and
several areas of engineering.

The problem of finding a zero point for monotone op-
erators play an important role in modern optimization and
nonlinear analysis. This is because it can be related to many
kinds of important problems, such as convex optimization
problem, image processing, equilibrium problem and vari-
ational inequality problems. In order to approximate the
solution to this problems, many authors have studies the
convergence of such problems in several setting. It is well
known that the metric projection operator plays an important
role in nonlinear functional analysis, optimization theory,
variational inequality, and complementarity problems, etc.

In 2012, Saewan and Kumam [14] introduced a modified
hybrid block projection algorithm for finding a common
element of the set of the solution of the complementarity
problems, the set of solutions of the system of equilibrium
problems and the set of common fixed points of an infinite
family in a 2-uniformly convex and uniformly smooth Ba-
nach space.

In this paper by the previously mentioned above results,
we will apply the results of Phuangphoo and Kumam [10],
this work bringing in the results to applied in other problems
as well complementarity problems and we shall use the
result to study the strong convergence theorem of zero point
of maximal monotone operators together with a system of
generalized equilibrium, variational inequality and fixed
point problems in a uniformly smooth and 2-uniformly
convex real Banach space. Moreover, we also apply the
result to obtain in Hilbert spaces.

Throughout this paper, we assume that R and J
are denoted by the set of real numbers and the set of
{1, 2, 3, ...,M}, respectively, where M is any given positive
integer. Let {Fk}k∈J : C × C → R be a bifunction, and
{Bk}k∈J : C → E∗ be a monotone mapping.

The system of generalized equilibrium problems, is to find
x ∈ C such that

Fk(x, y) + 〈y − x,Bkx〉 ≥ 0, k ∈ J, ∀y ∈ C. (I.2)
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The set of solutions of (I.2) is denoted by SGEP (Fk, Bk),
that is SGEP (Fk, Bk) = {x ∈ C : Fk(x, y) + 〈y −
x,Bkx〉 ≥ 0,∀y ∈ C}, ∀k ∈ J.

If J is a singleton, then problem (I.2) reduces to the
generalized equilibrium problems, is to find x ∈ C such
that

F (x, y) + 〈y − x,Bx〉 ≥ 0, ∀y ∈ C. (I.3)

The set of solutions of (I.3) is denoted by GEP (F,B),
that is

GEP (F,B) = {x ∈ C : F (x, y)+〈y−x,Bx〉 ≥ 0, } (I.4)

∀y ∈ C.
If B ≡ 0 the problem (I.3) reduces into the equilibrium

problem for F , denoted by EP (F ), is to find x ∈ C such
that

F (x, y) ≥ 0, ∀y ∈ C. (I.5)

If F ≡ 0 the problem (I.3) reduces into variational
inequality of Browder type, denoted by V I(C,B), is to find
x ∈ C such that

〈y − x,Bx〉 ≥ 0, ∀y ∈ C. (I.6)

Let {xn} be a sequence in E. We denote by xn → x and
xn ⇀ x that the strong convergence and weak convergence
of {xn}, respectively. The normalized duality mapping J
from E to 2E

∗
is defined by Jx = {f ∈ E∗ : 〈x, f〉 =

‖x‖2 = ‖f‖2}, ∀x ∈ E.By the Hahn-Banach theorem,
Jx 6= ∅ for each x ∈ E.

A Banach space E is said to be strictly convex if
∥∥x+y

2

∥∥ <
1 for all x, y ∈ E with ‖x‖ = ‖y‖ = 1 and x 6= y. It is said
to be uniformly convex if limn→∞ ‖xn−yn‖ = 0 for any two
sequences {xn} and {yn} in E such that ‖xn‖ ≤ 1, ‖yn‖ ≤ 1
and

lim
n→∞

∥∥∥∥xn + yn
2

∥∥∥∥ = 1. (I.7)

Let UE = {x ∈ E : ‖x‖ = 1} be the unit sphere of E.
Then, the Banach space E is said to be smooth if

lim
t→0

‖x+ ty‖ − ‖x‖
t

(I.8)

exists for each x, y ∈ UE . It is said to be uniformly smooth
if the limit (I.8) is attained uniformly for all x, y ∈ UE .

The function ρE : R+ → R+ is said to be the modulus of
smoothness of E if ρE(t) = sup

{
‖x+y‖+‖x−y‖

2 −1 : ‖x‖ =

1, ‖y‖ = t
}
.

The space E is said to be smooth if ρE(t) > 0,
∀t > 0 and is said to be uniformly smooth if and only
if limt→0+

ρE(t)
t = 0.

The modulus of convexity of E is the function δE : [0, 2]→
[0, 1] defined by δE(ε) = inf

{
1−
∥∥∥x+y

2

∥∥∥ : ‖x‖ ≤ 1 , ‖y‖ ≤

1 ; ‖x− y‖ ≥ ε
}
.

A Banach space E is said to be uniformly convex if and
only if δE(ε) > 0 for all ε ∈ (0, 2].

Let a real number p > 1. Then, E is said to be
p - uniformly convex if there exists a constant c > 0 such
that δE(ε) ≥ cεp, for all ε ∈ [0, 2]. Observe that every

p-uniformly convex space is uniformly convex. It is well-
known for example that

Lp(lp) or W p
m is

{
p-uniformly convex, if p ≥ 2;
2-uniformly convex, if 1 < p ≤ 2.

One should note that no a Banach space is p-uniformly
convex for 1 < p < 2. It is known that a Hilbert space is
uniformly smooth and 2-uniformly convex.

Now let E be a smooth and strictly convex reflexive Ba-
nach space. As Alber (see [1]) and Kamimura and Takahashi
(see [7]) did, the Lyapunov functional φ : E × E → R+ is
defined by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2, ∀x, y ∈ E.

It follows from Kohsaka and Takahashi (see [8]) that
φ(x, y) = 0 if and only if x = y, and that

(‖x‖ − ‖y‖)2 ≤ φ(x, y) ≤ (‖x‖+ ‖y‖)2. (I.9)

If E is a Hilbert space, then φ(x, y) = ‖x − y‖2, for all
x, y ∈ E.

Further suppose that C is nonempty closed convex subset
of E. The generalized projection (Alber [1]) ΠC : E → C is
a map that assigns to an arbitrary point x ∈ E the minimum
point of the functional φ(x, y), that is, ΠCx = x̄, where x̄
is the solution to the following minimization problem

φ(x̄, x) = inf
y∈C

φ(y, x), (I.10)

existence and uniqueness of the operator ΠC follows from
the properties of the functional φ(x, y) and strict monotonic-
ity of the mapping J .

So, the generalized projection ΠC : E → C is defined by
for each x ∈ E,

ΠC(x) = arg min
y∈C

φ(x, y).

As well know that if C is a nonempty closed convex
subset of a Hilbert space H and PC : H → C is the metric
projection of H onto C, then PC is nonexpansive.

Remark I.1. If E is a reflexive, strictly convex and smooth
Banach space, then for x, y ∈ E, φ(x, y) = 0 if and only if
x = y. It is sufficient to show that if φ(x, y) = 0 then x = y.
From Lyapunov functional, we have ‖x‖ = ‖y‖. This implies
that 〈x, Jy〉 = ‖x‖2 = ‖Jy‖2. From the definition of J, one
has Jx = Jy. Therefore, we have x = y; see [5] for more
details.

The following basic properties can be found in Cioranescu
[5].
• If E is a strictly convex, then J is strictly monotone.
• If E is uniformly smooth, then J is uniformly norm-to-

norm continuous on each bounded subset of E.
• If E is reflexive smooth and strictly convex, then the

normalized duality mapping J is single valued, one-to-
one and onto.

• If E be a reflexive strictly convex and smooth Banach
space and J is the duality mapping from E into E∗,
then J−1 is also single-value, bijective and is also the
duality mapping from E∗ into E and thus JJ−1 = IE∗

and J−1J = IE .
• If E is uniformly smooth, then E is smooth and

reflexive.
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• E is uniformly smooth if and only if E∗ is uniformly
convex.

• If E is a reflexive and strictly convex Banach space,
then J−1 is norm-weak∗-continuous.

Recall that, a mapping S : C → C is said to be
nonexpansive if ‖Sx− Sy‖ ≤ ‖x− y‖, ∀x, y ∈ C.

A mapping A : C → E∗ is said to be
δ-inverse-strongly monotone, if there exists a constant δ > 0
such that

〈x− y,Ax−Ay〉 ≥ δ‖Ax−Ay‖2, ∀x, y ∈ C.

A mapping S : C → C is said to be closed if for each
{xn} ⊂ C, xn → x and Sxn → y imply Sx = y.

Remark I.2. Let T is a nonexpansive of C into itself and
I is the identity mapping of a real Banach space E. Then, a
mapping A = I−T is 1

2 -inverse-strongly monotone mapping.

Remark I.3. Let a mapping Ak : R → R by Akx = kx,
∀x ∈ R and k ∈ {1, 2, 3, ..., n}. Then, a mapping Ak : R→
R is a finite family of 1

k -inverse-strongly monotone.

A mapping S : C → C is said to be quasi -φ- nonexpan-
sive (relatively quasi-nonexpansive) if Fix(S) 6= ∅, and

φ(u, Sx) ≤ φ(u, x), ∀x ∈ C, u ∈ Fix(S).

A mapping S : C → C is said to be quasi -φ-
asymptotically nonexpansive (asymptotically relatively
nonexpansive) if Fix(S) 6= ∅, and there exists a
sequence {kn} ⊂ [1,∞) with kn → 1 such that
φ(u, Snx) ≤ knφ(u, x), ∀x ∈ C, u ∈ Fix(S), ∀n ≥ 1.
It is easy to see that if A : C → E∗

is δ-inverse-strongly monotone, then A is
1
δ -Lipschitz continuous.

Example I.4. Let Πc be the generalized projection from a
smooth, strictly convex and reflexive Banach space E onto
a nonempty closed and convex subset C of E. Then, we
get Πc is closed and quasi -φ- asymptotically nonexpansive
mapping from E onto C with Fix(Πc) = C.

Example I.5. Let C := [−1
π ,

1
π ] and define T : C → C by

Tx =

{
x
2 sin( 1

x ), if x 6= 0;
x, if x = 0.

Then, T is quasi -φ- asymptotically nonexpansive mapping.

The class of quasi -φ- asymptotically nonexpansive map-
pings contains properly the class of relatively nonexpansive
mappings (see Matsushita and Takahashi [9]) as a subclass.

Let E be a smooth, strictly convex and reflexive Banach
space, C be a nonempty closed convex subset of E, T : C →
C be a mapping and Fix(T ) be the set of fixed points of T.

A point p ∈ C is said to be an asymptotic fixed point of
T if there exists a sequence {xn} ⊂ C such that xn ⇀ p
and ‖xn − Txn‖ → 0. We denoted the set of all asymptotic
fixed points of T by F̂ ix(T ).

A point p ∈ C is said to be a strong asymptotic fixed
point of T, if there exists a sequence {xn} ⊂ C such that
xn → p and ‖xn − Txn‖ → 0. We denoted the set of all
strong asymptotic fixed points of T by F̃ ix(T ).

A mapping T : C → C is said to be relatively nonexpan-
sive [9], [11], if Fix(T ) 6= ∅, F ix(T ) = F̂ ix(T ) and

φ(p, Tx) ≤ φ(p, x), ∀x ∈ C, p ∈ Fix(T ).

A mapping T : C → C is said to be weak relatively
nonexpansive [15], if Fix(T ) 6= ∅, F ix(T ) = F̃ ix(T ) and

φ(p, Tx) ≤ φ(p, x), ∀x ∈ C, p ∈ Fix(T ).

Remark I.6. If E is a real Hilbert space H, then φ(x, y) =
‖x − y‖2 and ΠC = PC (the metric projection of H onto
C).

Remark I.7. Direct from the definition of a mapping, so it
is easy to see that
• Each relatively nonexpansive mapping is closed.
• Every quasi -φ- nonexpansive mapping is quasi -φ-

asymptotically nonexpansive mapping with {kn = 1},
but the converse is not true.

• Each weak relatively nonexpansive mapping is a quasi
-φ- nonexpansive mapping (because it does not require
the condition Fix(T ) = F̃ ix(T ), but the converse is
not true.

• Every relatively nonexpansive mapping is a weak rela-
tively nonexpansive mappings, but the converse is not
true.

• Every countable family of weak relatively nonexpansive
mappings is a countable family of of uniformly closed
and quasi -φ- nonexpansive mappings, and so it is a
countable family of uniformly closed and quasi -φ-
asymptotically nonexpansive mappings.

Definition I.8. Let {Si}∞i=1 : C → C be a sequence of map-
pings. {Si}∞i=1 is said to be a family of uniformly quasi -φ-
asymptotically nonexpansive mappings, if

⋂∞
i=1 Fix(Si) 6=

∅ and there exists a sequence {kn} ⊂ [1,∞) with kn → 1
such that for each i ≥ 1, φ(u, Sni x) ≤ knφ(u, x), ∀u ∈⋂∞
i=1 Fix(Si), x ∈ C, ∀n ≥ 1.

Definition I.9. A mapping S : C → C is said to be
uniformly L-Lipschitz continuous, if there exists a constant
L > 0 such that

‖Snx− Sny‖ ≤ L‖x− y‖, ∀x, y ∈ C, ∀n ≥ 1.

Lemma I.10. (see Alber [1]). Let C be a nonempty closed
and convex subset of a smooth and strictly convex reflexive
Banach space E, and let x ∈ E. Then,

φ(x,ΠC(y)) + φ(ΠC(y), y) ≤ φ(x, y),∀x ∈ C, y ∈ E.

Lemma I.11. (see Kamimura and Takahashi [7]). Let C be a
nonempty closed and convex subset of a smooth and strictly
convex reflexive Banach space E, and let x ∈ E and u ∈ C.
Then,

u = ΠC(x)⇔ 〈u− y, Jx− Ju〉 ≥ 0, ∀y ∈ C.

We make use of the function V : E×E∗ → R defined by

V (x, x∗) = ‖x‖2 − 2〈x, x∗〉+ ‖x∗‖2, ∀x ∈ E,∀x∗ ∈ E∗.

Observe that V (x, x∗) = φ(x, J−1x∗) for all x ∈ E and
x∗ ∈ E∗. The following lemma is well-known.

Lemma I.12. (see Alber [1]) Let E be a smooth and strictly
convex reflexive Banach space with E∗as its dual, then

V (x, x∗) + 2〈J−1x∗ − x, y∗〉 ≤ V (x, x∗ + y∗),

for all x ∈ E and x∗, y∗ ∈ E∗.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 10, 2016

ISSN: 1998-0159 154



Lemma I.13. (see Kamimura and Takahashi [7]). Let E be
a uniformly convex and smooth real Banach space and let
{xn} and {yn} be two sequences of E. If φ(xn, yn) → 0
and either {xn} or {yn} is bounded, then ‖xn − yn‖ → 0.

For solving the generalized equilibrium problem, let us
assume that the mapping B : C → E∗ is δ-inverse-strongly
monotone mapping and the bifunction F : C × C → R
satisfies the following conditions:
(A1) F (x, x) = 0, for all x ∈ C;
(A2) F is monotone, i.e., F (x, y) +F (y, x) ≤ 0, ∀x, y ∈

C;
(A3) lim sup

t↓0
F (x+ t(z − x), y) ≤ F (x, y), ∀x, y, z ∈ C;

(A4) for any y ∈ C, the function y 7→ F (x, y) is convex
and lower semicontinuous.

Lemma I.14. Let E be a uniformly smooth and strictly
convex Banach space with the Kadec-Klee property,
{xn} and {yn} be two sequences of E, and p ∈ E. If
xn → p and φ(xn, yn)→ 0, then yn → p.

Lemma I.15. (see Blum and Oettli [2]). Let C be a nonempty
closed and convex subset of a smooth and strictly convex
reflexive Banach space E, and let F : C × C → R be a
bifunction satisfying the following conditions (A1) - (A4).
Let r > 0 be any given number and x ∈ E be any point.
Then, there exists a z ∈ C such that

F (z, y) +
1

r
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C. (I.11)

Lemma I.16. (see Chang et al. [4]) Let C be a nonempty
closed and convex subset of a smooth and strictly convex
reflexive Banach space E, and let B : C → E∗ be a δ-
inverse-strongly monotone mapping and F : C ×C → R be
a bifunction satisfying the following conditions (A1)-(A4).
Let r > 0 be any given number and x ∈ E be any point.
Then, there exists a point z ∈ C such that

F (z, y) + 〈y − z,Bz〉+
1

r
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C.

(I.12)

Lemma I.17. (see Chang et al. [4]) Let C be a nonempty
closed and convex subset of a smooth and strictly convex
reflexive Banach space E, and let B : C → E∗ be a δ-
inverse-strongly monotone mapping and F : C ×C → R be
a bifunction satisfying the following conditions (A1)-(A4).
Let r > 0 and x ∈ E, and we define a mapping TFr : E → C
as follows: for any x ∈ C,

TFr x = {z ∈ C : F (z, y) + 〈y − z,Bz〉

+
1

r
〈y − z, Jz − Jx〉 ≥ 0, } ∀y ∈ C.

Then, the following conclusions hold:

(1) TFr is single-valued;
(2) TFr is a firmly nonexpansive type mapping, i.e.,
〈TFr x− TFr y, JTFr x− JTFr y〉 ≤ 〈TFr x− TFr y, Jx−
Jy〉,∀x, y ∈ E

(3) Fix(TFr ) = ˜Fix(TFr ) = EP ;
(4) EP is a closed and convex set of C;
(5) φ(p, TFr x) + φ(TFr x, x) ≤ φ(p, x), ∀p ∈ Fix(TFr );

(6) for each n ≥ 1, rn > d > 0 and un ∈ C with
limn→∞ un = limn→∞ Trnun = u, we have

F (u, y) + 〈y − u,Bu〉 ≥ 0, ∀y ∈ C.

Lemma I.18. (see Cioranescu [6]) Let C be a nonempty
closed and convex subset of a real uniformly smooth and
strictly convex Banach space E with the Kadec-Klee prop-
erty, S : C → C be a closed and quasi -φ- asymptotically
nonexpansive mapping with a sequence {kn} ⊂ [1,∞) and
kn → 1. Then, Fix(S) is closed and convex in C.

Lemma I.19. (see Chang et al. [3]) Let E be a uniformly
convex Banach space, r > 0 be a positive number and
Br(0) be a closed ball of E. Then, for any given sequence
{xn}∞n=1 ⊂ Br(0) and for any given {rn}∞n=1 ⊂ (0, 1) with∑∞
n=1 rn = 1, there exists a continuous, strictly increasing

and convex function g : [0, 2r)→ [0,∞) with g(0) = 0 such
that for any positive integers i , j with i < j,∥∥∥∥∥

∞∑
n=1

rnxn

∥∥∥∥∥
2

≤
∞∑
n=1

rn‖xn‖2 − rirjg(‖xi − xj‖).

Lemma I.20. (see Xu [17]) Let E be a 2-uniformly convex
real Banach space, then for all x, y ∈ E, we have

‖x− y‖ ≤ 2

c2
‖Jx− Jy‖,

where J is the normalized duality mapping of E and 0 <
c ≤ 1, and 1

c is called the 2-uniformly convex constant of
E.

We note that every uniformly convex Banach space has
the Kadec-Klee property. For more details on Kadec-Klee
property, the reader is referred to [6], [16].

Example I.21. Let E be a uniformly smooth and strictly
convex Banach space and A ⊂ E×E∗ be a maximal mono-
tone mapping such that its zero set A−1(0) is nonempty.
Then, we get Jr = (J + rA)−1J is closed and quasi -φ-
asymptotically nonexpansive mapping from E onto D(A)
and Fix(Jr) = A−1(0).

A monotone A is said to be maximal if its graph G(A) =
{(x, y∗) : y∗ ∈ Ax} is not properly contained in the graph
of any other monotone operator. If A is maximal monotone,
then the solution set A−10 is closed and convex. Let E be
a reflexive, strictly convex and smooth Banach space, it is
known that A is a maximal monotone if and only if R(J +
rA) = E∗ for all r > 0. The resolvent of monotone operator
A is defined by Jr = (J + rA)−1J, ∀r > 0.

A well-known method for solving zeroes of maximal
monotone operator is proximal point algorithm. Let A be
a maximal monotone operator in a Hilbert space H . The
proximal point algorithm generates, for starting x1 = x ∈ H ,
a sequence {xn} in H by

xn+1 = Jrnxn, ∀n ≥ 1, (I.13)

where {rn} ⊂ (0,∞) and Jrn = (I + rnA)−1.

Rockafellar [13] proved that the sequence {xn} defined
by (I.13) converges weakly to an element of A−10.

Let E be a smooth strictly convex and reflexive Banach
space, C be a nonempty closed convex subset of E and A ⊂
E × E∗ be a monotone operator satisfying the following:

D(A) ⊂ C ⊂ J−1(∩r>0R(J + rA)).
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Then the resolvent Jr : C → D(A) of A is defined by

Jrx = {z ∈ D(A) : Jx ∈ Jz + rAz, ∀x ∈ C}.

Jr is a single-valued mapping from E to D(A). Also,
A−1(0) = F (Jr) for all r > 0, where F (Jr) is the set of all
fixed points of Jr. For any r > 0, the Yosida approximation
Ar : C → E∗ of A is define by Arx = Jx−JJrx

r for all
x ∈ C. We know that Arx ∈ A(Jrx) for all r > 0 and
x ∈ E.

Lemma I.22. (see Kohsaka and Takahashi [8]) Let E be
a smooth strictly convex and reflexive Banach space, C
be a nonempty closed convex subset of E and A ⊂ E ×
E∗ be a monotone operator satisfying D(A) ⊂ C ⊂
J−1(∩r>0R(J + rA)). For any r > 0, let Jr and Ar be the
resolvent and the Yosida approximation of A, respectively.
Then the following hold:

(1) φ(p, Jrx) + φ(Jrx, x) ≤ φ(p, x) for all x ∈ C and
p ∈ A−10;

(2) (Jrx,Arx) ∈ A for all x ∈ C;
(3) F (Jr) = A−10.

Lemma I.23. (see Rockafellar [12]) Let E be a reflexive
strictly convex and smooth Banach space. Then an operator
A ⊂ E×E∗ is maximal monotone if and only if R(J+rA) =
E∗ for all r > 0.

Let A be an inverse-strongly monotone mapping of C into
E∗ which is said to be hemicontinuous it for all x, y ∈ C, the
mapping F : [0, 1]→ E∗, defined by F (t) = A(tx+(1−t)y)
is continuous with respect to the weak∗ topology of E∗. We
define NC(v) the normal cone for C at a point v ∈ C, that
is,

NC(v) = {x∗ ∈ E∗ : 〈v − y, x∗〉 ≥ 0, ∀y ∈ C}.

Lemma I.24. (see Rockafellar [12]) Let C be a nonempty,
closed and convex subset of a Banach space E and A is
monotone, hemicontinuous operator of C into E∗. Let U ⊂
E × E∗ be an operator defined as follows:

Uv =

{
Av +NC(v), v ∈ C;
∅, v /∈ C.

Then, U is maximal monotone and U−1(0) = V I(C,A).

II. THE SYSTEM OF GENERALIZED EQUILIBRIUM
PROBLEMS AND FIXED POINT PROBLEMS IN BANACH

SPACES

In this section, we refer a strong convergence theorem by
[10] which solves the problem of finding a common solution
of the system of generalized equilibrium problems and fixed
point problems in Banach spaces.

For example the following the condition is satisfied.

Example II.1. Let A : R→ R by given by

A :=

{
0, if x ≤ 0;
4x, if x > 0.

Then, A is 1
4 -inverse-strongly monotone mapping with

V I(R, A) = A−1(0) = (−∞, 0].

We give an example for nonlinear mappings to illustrate
the next results.

Example II.2. Let S : R→ R be given by S := (I+rB)−1,
for r > 0, where

Bx :=

 x+ 1, if x ∈ (−∞,−1];
0, if x ∈ (−1, 0],
2x, if x ∈ (0,∞).

Then, we get that Jr := (I+rB)−1 = S is uniformly L- Lip-
schitz continuous and quasi -φ- asymptotically nonexpansive
with {kn} = 1 for each n ≥ 1 and Fix(Jr) = B−1(0) =
Fix(S) = [−1, 0].

Now, we remark that, let C be a subset of a real Banach
space E and A : C → E∗ be an inverse strongly monotone
mapping satisfying ‖Ax‖ ≤ ‖Ax− Ap‖, for all x ∈ C and
p ∈ V I(C,A), then V I(C,A) = A−1(0) = {p ∈ C : Ap =
0}.

Theorem II.3. Let C be a nonempty, closed and convex
subset of a uniformly smooth and 2-uniformly convex real
Banach space E. Suppose that

(B1) Let Bk : C → E∗ for each k = 1, 2, 3, ...,M be a
finite family of δk-inverse-strongly monotone mappings, and
let Fk : C×C → R be a bifunction which satisfies conditions
(A1)-(A4).

(B2) Let {Ti}∞i=1 and {Sj}∞j=1 : C → C be countable
families of uniformly closed and ωi,µj-Lipschitz continuous
and quasi -φ- asymptotically nonexpansive mappings with
sequences {kn}, {ln} ⊂ [1,∞) and kn → 1, ln → 1,
respectively.

(B3) Let An : C → E∗ for each n = 1, 2, 3, ..., N be a
finite family of γn-inverse strongly monotone mappings and
let γ = min{γn : n = 1, 2, 3, ..., N}.

(B4) Ω :=
(⋂∞

i=1 Fix(Ti)
)⋂(⋂∞

j=1 Fix(Sj)
)⋂

(⋂M

k=1
SGEP (Fk, Bk)

)⋂(⋂N

n=1
V I(C,An)

)
is a nonempty and bounded in C.

Let {xn}∞n=1, {zn}∞n=1, {yn}∞n=1 and {un}∞n=1 be se-
quences generated by

x0 ∈ C chosen arbitrary, C0 = C

zn = ΠCJ
−1(Jxn − rnAnxn)

yn = J−1(β
(1)
n,0Jxn +

∑∞
i=1 β

(2)
n,iJT

n
i xn

+
∑∞
j=1 β

(3)
n,jJS

n
j zn)

un = TFM
rM,n

T
FM−1
rM−1,n ...T

F2
r2,nT

F1
r1,nyn

Cn+1 = {v ∈ Cn : φ(v, un) ≤ φ(v, xn) + θn}
xn+1 = ΠCn+1(x0), ∀n ≥ 0,

(II.1)
where TFk

rk,n
: E → C, k = 1, 2, 3, ...,M , is a mapping

defined by (I.17) with F = Fk and r = rk,n and it is the
solutions to the following system of generalized equilibrium
problem: Fk(z, y) + 〈y − z,Bkz〉 + 1

r 〈y − z, Jz − Jx〉 ≥
0, ∀y ∈ C, k = 1, 2, 3, ...,M. rk,n ∈ [d,∞), for
some d > 0, θn = supp∈Ω(max{kn, ln} − 1)φ(p, xn),
An ≡ An(mod N), ‖Anx‖ ≤ ‖Anx − Anp‖, for all x ∈ C
and p ∈ Ω. Let {rn} be a sequence in [0,1] such that
0 < rn <

c2γ
2 , where 1

c is the 2-uniformly convex constant
of E.

Let {β(1)
n,0}, {β

(2)
n,i}, {β

(3)
n,j} be sequences in [0,1] satisfying

the following conditions:
1) for each n ≥ 0, β

(1)
n,0 +

∑∞
i=1 β

(2)
n,i +

∑∞
j=1 β

(3)
n,j = 1;
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2) lim infn→∞ β
(1)
n,0β

(2)
n,i > 0 and

lim infn→∞ β
(1)
n,0β

(3)
n,j > 0, ∀i, j ≥ 1, i 6= j.

Then, the sequence {xn} converges strongly to p∗ = ΠΩ(x0).

Proof: See the complete this proof in [10].

III. THE COMPLEMENTARITY PROBLEMS

Complementarity problems are used to model several
problems of economics, physics, optimization theory and
engineering.

Definition III.1. Let K be a nonempty, closed and convex
cone in E. We define the polar K∗ of K as follows:

K∗ = {y∗ ∈ E∗ : 〈x, y∗〉 ≥ 0, ∀x ∈ K}.

Let a mapping A : K → E∗ is an operator, then an
element u ∈ K is called a solution of complementarity
problems if [16]

Au ∈ K∗, and 〈u,Au〉 = 0.

The set of solutions of the complementarity problem is
denoted by CP (K,A).

Several problems arising in different fields such as math-
ematical programming, mechanics, game theory are to find
the solutions of complementarity problem and the variational
type problem.

Lemma III.2. Let X be a nonempty, closed convex cone in
a locally convex topological vector space E and let X∗ be
the polar of X. Let T be a mapping of X into E∗. Then, the
set of solutions of the complementarity problem equals the
set of solutions of the variational inequality. That is {x ∈
X : Tx ∈ X∗ and 〈x, Tx〉 = 0} = {x ∈ X : 〈u−x, Tx〉 ≥
0, ∀u ∈ X}.

Proof: Let x ∈ X be a solution of complementarity
problem. Then, for any u ∈ X , we have

〈u− x, Tx〉 = 〈u, Tx〉 − 〈x, Tx〉
= 〈u, Tx〉
≥ 0.

Therefore, x is a solution of variational inequality prob-
lem.

Conversely, let x ∈ X be a solution of variational
inequality problem. Then, we have

〈u− x, Tx〉 ≥ 0, ∀u ∈ X.

In the particular, if u = 0, we have 〈x, Tx〉 ≤ 0.
If u = rx, with r = 1, we have

〈rx− x, Tx〉 = (r − 1)〈x, Tx〉 ≥ 0.

Hence, 〈x, Tx〉 ≥ 0. Therefore, 〈x, Tx〉 = 0.
Next, we show that Tx ∈ X∗. If not, there exists u0 ∈ X

such that 〈x, Tx〉 = 0.
On the other hand, 〈u0 − x, Tx〉 ≥ 0, So that, we have

0 > 〈u0, Tx〉 ≥ 〈x, Tx〉 = 0.

This is a contradiction. This implies that x is a solution of
complementarity problem.

Theorem III.3. Let K be a nonempty, closed and convex
subset of a uniformly smooth and 2-uniformly convex real
Banach space E. Suppose that

(C1) Let Bk : K → E∗ for each k = 1, 2, 3, ...,M be
a finite family of δk-inverse-strongly monotone mappings,
and let Fk : K × K → R be a bifunction which satisfies
conditions (A1)-(A4).

(C2) Let {Ti}∞i=1 and {Sj}∞j=1 : K → K be countable
families of uniformly closed and ωi,µj-Lipschitz continuous
and quasi -φ- asymptotically nonexpansive mappings with
sequences {kn}, {ln} ⊂ [1,∞) and kn → 1, ln → 1,
respectively.

(C3) Let An : K → E∗ for each n = 1, 2, 3, ..., N be a
finite family of γn-inverse strongly monotone mappings and
let γ = min{γn : n = 1, 2, 3, ..., N}.

(C4) Ω :=
(⋂∞

i=1 Fix(Ti)
)⋂(⋂∞

j=1 Fix(Sj)
)⋂

(⋂M

k=1
SGEP (Fk, Bk)

)⋂(⋂N

n=1
CP (K,An)

)
is a nonempty and bounded in C.

Let {xn}∞n=1, {zn}∞n=1, {yn}∞n=1 and {un}∞n=1 be se-
quences generated by



x0 ∈ K chosen arbitrary, K0 = K

zn = ΠKJ
−1(Jxn − rnAnxn)

yn = J−1(β
(1)
n,0Jxn +

∑∞
i=1 β

(2)
n,iJT

n
i xn

+
∑∞
j=1 β

(3)
n,jJS

n
j zn)

un = TFM
rM,n

T
FM−1
rM−1,n ...T

F2
r2,nT

F1
r1,nyn

Kn+1 = {v ∈ Kn : φ(v, un) ≤ φ(v, xn) + θn}
xn+1 = ΠKn+1

(x0), ∀n ≥ 0,
(III.1)

where TFk
rk,n

: E → K, k = 1, 2, 3, ...,M , is a mapping
defined by (I.17) with F = Fk and r = rk,n and it is the
solutions to the following system of generalized equilibrium
problem:

Fk(z, y) + 〈y − z,Bkz〉+
1

r
〈y − z, Jz − Jx〉 ≥ 0,

∀y ∈ C, k = 1, 2, 3, ...,M. rk,n ∈ [d,∞), for some d > 0,

θn = sup
p∈Ω

(max{kn, ln} − 1)φ(p, xn),

An ≡ An(mod N), ‖Anx‖ ≤ ‖Anx − Anp‖, for all x ∈ C
and p ∈ Ω. Let {rn} be a sequence in [0,1] such that 0 <

rn <
c2γ
2 , where 1

c is the 2-uniformly convex constant of E.
Let {β(1)

n,0}, {β
(2)
n,i}, {β

(3)
n,j} be sequences in [0,1] satisfying

the following conditions:

1) for each n ≥ 0, β
(1)
n,0 +

∑∞
i=1 β

(2)
n,i +

∑∞
j=1 β

(3)
n,j = 1;

2) lim infn→∞ β
(1)
n,0β

(2)
n,i > 0 and

lim infn→∞ β
(1)
n,0β

(3)
n,j > 0, ∀i, j ≥ 1, i 6= j.

Then, the sequence {xn} converges strongly to p∗ = ΠΩ(x0).

Proof: As in the proof of Lemma III.2, we have
V I(C,An) = CP (K,An),

So, we obtain the above the results.
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IV. A ZERO POINT OF MAXIMAL MONOTONE OPERATORS

Definition IV.1. Let E be a uniformly smooth and strictly
convex Banach space and A be a maximal monotone operator
from E to E∗. For each r > 0, we can define a single valued
mapping Jr : E → D(A) by Jr = (J + rA)−1J and such a
mapping Jr is called the resolvent of A. It is easy to show
that Fix(Jr) = A−1(0), for all r > 0.

It is well known that if E is a smooth strictly convex and
reflexive Banach space and A is a continuous monotone oper-
ator with A−10 6= ∅, then Jr is weak relatively nonexpansive
mappings. We know that F (Jr) is closed and convex.

One of the most interesting and important problems in
the theory of maximal monotone operators is to find an
efficient iterative algorithm to compute approximately ze-
roes of maximal monotone operators. The proximal point
algorithm of Rockafellar [13] is recognized as a powerful
and successful algorithm for finding a solution of maximal
monotone operators.

Theorem IV.2. Let C be a nonempty, closed and convex
subset of a uniformly smooth and 2-uniformly convex real
Banach space E. Suppose that

(D1) Let Bk : C → E∗ for each k = 1, 2, 3, ...,M be a
finite family of δk-inverse-strongly monotone mappings, and
let Fk : C×C → R be a bifunction which satisfies conditions
(A1)-(A4).

(D2) Let {Ti}∞i=1 and {Sj}∞j=1 : C → C be countable
families of uniformly closed and weak relatively nonexpan-
sive mappings.

(D3) Let An : C → E∗ for each n = 1, 2, 3, ..., N be a
finite family of γn-inverse strongly monotone mappings and
let γ = min{γn : n = 1, 2, 3, ..., N}.

(D4) Ω :=
(⋂∞

i=1 Fix(Ti)
)⋂(⋂∞

j=1 Fix(Sj)
)⋂

(⋂M

k=1
SGEP (Fk, Bk)

)⋂(⋂N

n=1
V I(C,An)

)
is a nonempty and bounded in C.

Let {xn}∞n=1, {zn}∞n=1, {yn}∞n=1 and {un}∞n=1 be se-
quences generated by

x0 ∈ C chosen arbitrary, C0 = C

zn = ΠCJ
−1(Jxn − rnAnxn)

yn = J−1(β
(1)
n,0Jxn +

∑∞
i=1 β

(2)
n,iJTixn

+
∑∞
j=1 β

(3)
n,jJSjzn)

un = TFM
rM,n

T
FM−1
rM−1,n ...T

F2
r2,nT

F1
r1,nyn

Cn+1 = {v ∈ Cn : φ(v, un) ≤ φ(v, xn)}
xn+1 = ΠCn+1(x0), ∀n ≥ 0,

(IV.1)

where TFk
rk,n

: E → C, k = 1, 2, 3, ...,M , is a mapping
defined by (I.17) with F = Fk and r = rk,n and it is the
solutions to the following system of generalized equilibrium
problem: Fk(z, y) + 〈y − z,Bkz〉 + 1

r 〈y − z, Jz − Jx〉 ≥
0, ∀y ∈ C, k = 1, 2, 3, ...,M. rk,n ∈ [d,∞), for some
d > 0, An ≡ An(mod N), ‖Anx‖ ≤ ‖Anx − Anp‖, for all
x ∈ C and p ∈ Ω. Let {rn} be a sequence in [0,1] such that
0 < rn <

c2γ
2 , where 1

c is the 2-uniformly convex constant of
E. Let {β(1)

n,0}, {β
(2)
n,i}, {β

(3)
n,j} be sequences in [0,1] satisfying

the following conditions:

1) for each n ≥ 0, β
(1)
n,0 +

∑∞
i=1 β

(2)
n,i +

∑∞
j=1 β

(3)
n,j = 1;

2) lim infn→∞ β
(1)
n,0β

(2)
n,i > 0 and

lim infn→∞ β
(1)
n,0β

(3)
n,j > 0, ∀i, j ≥ 1, i 6= j.

Then, the sequence {xn} converges strongly to p∗ = ΠΩ(x0).

Proof: Since {Ti}∞i=1 and {Sj}∞j=1 are countable fam-
ilies of uniformly closed and weak relatively nonexpansive
mappings, By Remark I.7, it is countable families of uni-
formly closed and quasi -φ- nonexpansive mappings, and
it is countable families of uniformly closed and quasi -φ-
asymptotically nonexpansive mappings. Therefore, it can be
obtained from Theorem II.3 immediately.

If Ti = T, Sj = S, Fk = F, Bk = B and An = A
where ∀i, j ∈ N, k = 1, 2, 3, ...,M and ∀n = 1, 2, 3, ..., N
in Theorem II.3, then the Theorem II.3 is reduced to the
following corollary.

Theorem IV.3. Let C be a nonempty, closed and convex
subset of a uniformly smooth and 2-uniformly convex real
Banach space E. Suppose that

(E1) Let Bk : C → E∗ for each k = 1, 2, 3, ...,M be a
finite family of δk-inverse-strongly monotone mappings, and
let Fk : C×C → R be a bifunction which satisfies conditions
(A1)-(A4).

(E2) Let A and B be two maximal monotone operators
from E to E∗ and let JAr and JBr be the resolvent of A and
B, respectively, where r > 0.

(E3) Let An : C → E∗ for each n = 1, 2, 3, ..., N be a
finite family of γn-inverse strongly monotone mappings and
let γ = min{γn : n = 1, 2, 3, ..., N}.

(E4)

Ω := A−1(0)
⋂
B−1(0)

⋂(⋂M

k=1
SGEP (Fk, Bk)

)
⋂(⋂N

n=1 V I(C,An)
)

is a nonempty and bounded in C.
Let {xn}∞n=1, {zn}∞n=1, {yn}∞n=1 and {un}∞n=1 be se-

quences generated by

x0 ∈ C chosen arbitrary, C0 = C

zn = ΠCJ
−1(Jxn − rnAnxn)

yn = J−1(β
(1)
n,0Jxn +

∑∞
i=1 β

(2)
n,iJJ

A
rixn

+
∑∞
j=1 β

(3)
n,jJJ

B
rjzn)

un = TFM
rM,n

T
FM−1
rM−1,n ...T

F2
r2,nT

F1
r1,nyn

Cn+1 = {v ∈ Cn : φ(v, un) ≤ φ(v, xn) + θn}
xn+1 = ΠCn+1

(x0), ∀n ≥ 0,
(IV.2)

where TFk
rk,n

: E → C, k = 1, 2, 3, ...,M , is a mapping
defined by (I.17) with F = Fk and r = rk,n and it is the
solutions to the following system of generalized equilibrium
problem: Fk(z, y) + 〈y − z,Bkz〉 + 1

r 〈y − z, Jz − Jx〉 ≥
0, ∀y ∈ C, k = 1, 2, 3, ...,M. rk,n ∈ [d,∞), for
some d > 0, θn = supp∈Ω(max{kn, ln} − 1)φ(p, xn),
An ≡ An(mod N), ‖Anx‖ ≤ ‖Anx − Anp‖, for all x ∈ C
and p ∈ Ω. Let {rn} be a sequence in [0,1] such that
0 < rn <

c2γ
2 , where 1

c is the 2-uniformly convex constant of
E. Let {β(1)

n,0}, {β
(2)
n,i}, {β

(3)
n,j} be sequences in [0,1] satisfying

the following conditions:
1) for each n ≥ 0, β

(1)
n,0 +

∑∞
i=1 β

(2)
n,i +

∑∞
j=1 β

(3)
n,j = 1;

2) lim infn→∞ β
(1)
n,0β

(2)
n,i > 0 and

lim infn→∞ β
(1)
n,0β

(3)
n,j > 0, ∀i, j ≥ 1, i 6= j.

Then, the sequence {xn} converges strongly to p∗ = ΠΩ(x0).
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Proof: It is well-known that for each i ≥ 1, JAri is a
relatively nonexpansive mapping (see, for example [9], [11]).

Therefore, for each p ∈ Fix(JAri) and w ∈ E, we have

φ(p, JAriw) ≤ φ(p, w).

Again, by the same method we can prove that the set of
strong asymptotic fixed points, so that

F̃ ix({JAri}
∞
i=1) =

∞⋂
i=1

Fix(JAri) = A−1(0).

This implies that {JAri}
∞
i=1 is a countable family of weak

relatively nonexpansive mapping with the common fixed
point set

⋂∞
i=1 Fix(JAri) = A−1(0).

By the similar way, we can prove that {JBrj}
∞
j=1 is a

countable family of weak relatively nonexpansive mapping
with the common fixed point set

⋂∞
j=1 Fix(JBrj ) = B−1(0).

Hence, the conclusion of the Theorem IV.3 can be obtained
from Theorem IV.2 immediately.

A. Application to Hilbert spaces

Theorem IV.4. Let C be a nonempty, closed and convex
subset of a Hilbert space H. Suppose that

(F1) Let Bk : C → H for each k = 1, 2, 3, ...,M be a
finite family of δk-inverse-strongly monotone mappings, and
let Fk : C×C → R be a bifunction which satisfies conditions
(A1)-(A4).

(F2) Let {Ti}∞i=1 and {Sj}∞j=1 : C → C be countable
families of uniformly closed and ωi,µj-Lipschitz continuous
and quasi -φ- asymptotically nonexpansive mappings with
sequences {kn}, {ln} ⊂ [1,∞) and kn → 1, ln → 1,
respectively.

(F3) Let An : C → H for each n = 1, 2, 3, ..., N be a
finite family of γn-inverse strongly monotone mappings and
let γ = min{γn : n = 1, 2, 3, ..., N}.

(F4) Ω :=
(⋂∞

i=1 Fix(Ti)
)⋂(⋂∞

j=1 Fix(Sj)
)⋂

(⋂M

k=1
SGEP (Fk, Bk)

)⋂(⋂N

n=1
V I(C,An)

)
is a nonempty and bounded in C.

Let {xn}∞n=1, {zn}∞n=1, {yn}∞n=1 and {un}∞n=1 be se-
quences generated by

x0 ∈ C chosen arbitrary, C0 = C

zn = PC(xn − rnAnxn)

yn = β
(1)
n,0Jxn +

∑∞
i=1 β

(2)
n,iT

n
i xn +

∑∞
j=1 β

(3)
n,jS

n
j zn

un = TFM
rM,n

T
FM−1
rM−1,n ...T

F2
r2,nT

F1
r1,nyn

Cn+1 = {v ∈ Cn : ‖v − un‖ ≤ ‖v − xn‖+ θn}
xn+1 = PCn+1

(x0), ∀n ≥ 0,
(IV.3)

where TFk
rk,n

: H → C, k = 1, 2, 3, ...,M , is a mapping
defined by (I.17) with F = Fk and r = rk,n and it is the
solutions to the following system of generalized equilibrium
problem: Fk(z, y) + 〈y − z,Bkz〉 + 1

r 〈y − z, Jz − Jx〉 ≥
0, ∀y ∈ C, k = 1, 2, 3, ...,M. rk,n ∈ [d,∞), for some
d > 0, θn = supp∈Ω(max{kn, ln} − 1)‖p − xn‖, An ≡
An(mod N), ‖Anx‖ ≤ ‖Anx − Anp‖, for all x ∈ C and
p ∈ Ω. Let {rn} be a sequence in [a , b] for some a, b
such that 0 < a < b < rn

2 . Let {β(1)
n,0}, {β

(2)
n,i}, {β

(3)
n,j} be

sequences in [0,1] satisfying the following conditions:

1) for each n ≥ 0, β
(1)
n,0 +

∑∞
i=1 β

(2)
n,i +

∑∞
j=1 β

(3)
n,j = 1;

2) lim infn→∞ β
(1)
n,0β

(2)
n,i > 0 and

lim infn→∞ β
(1)
n,0β

(3)
n,j > 0, ∀i, j ≥ 1, i 6= j.

Then, the sequence {xn} converges strongly to p∗ = PΩ(x0).

Proof: If E = H , a Hilbert space, then E is 2-uniformly
convex (we can choose c = 1) and uniformly smooth Banach
space.

Moreover, J = I , identity mapping on H and ΠC = PC ,
projection mapping from H to C.

Thus, the conclusion of the Theorem IV.4 can be obtained
from Theorem II.3 immediately.
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